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Application of Biorthogonal Interpolating Wavelets
to the Galerkin Scheme of Time Dependent
Maxwell’s Equations

Masafumi Fujii and Wolfgang J. R. Hoefer

Abstract—A family of biorthogonal interpolating wavelets ! \ ' ' 00,

has been applied to time-domain electromagnetic field modeling DD: e
through the wavelet-Galerkin scheme. The scaling functions are 08 \k BBZ _____ ]
the Deslauriers—Dubuc interpolating functions and the wavelets i BB -
are the shifted and contracted version of the scaling functions. 0.6 - DD - d
This set of bases yields a simple algorithm for the solution of DDy e
Maxwell’s equations in time domain due to their interpolation 2 o4
properties. The derivation of the algorithm is presented in this s
paper, followed by a series of numerical verification on some
resonant structures. 02

Index Terms—Biorthogonal wavelets, Deslauriers—Dubuc inter- 0
polating functions, electromagnetic field analysis, time domain.
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. INTRODUCTION

AVELETS have been applied to the solution 0f:ig. 1. Deslauriers—Dubuc interpolating function of or@gr— 1 for p =
Maxwell's equations in time domain [1], [2] yielding @2, -- -, 10. They have even symmetry with respectite= 0. The numbers in
scheme of highly linear numerical dispersion properties. T legend denote the parameger
authors have extended the shifted interpolation scheme of [2]
by using the scaling functions of higher regularity [3] and haveactly supported orthogonal scaling functigfsof p vanishing
shown advantages of the scheme in analyzing electrically lafj@ments [9] as

inhomogeneous structures [4]. +o0
This paper addresses an application of the interpolating P(x) :/ Po(w)po(u — ) du 1)
wavelets [5], [6] through the wavelet-Galerkin scheme of the -

time dependent Maxwell's equations. The scaling functiomhich has even symmetry and minimum supportf-ep +

is the Deslauriers—-Dubuc interpolating function [7], and the 2p — 1] to reproduce polynomials of ordép — 1. Fig. 1
wavelet is the shifted and contracted version of the scalispows¢(z) of p = 2, ---, 10.

function. These functions constitute néA-biorthogonal bases  We choosep(r) as a scaling function, which satisfies the
that are smooth, symmetric, compactly supported and exadily-called dilation relation

interpolating. Unlike the Daubechies orthogonal wavelets [8], +oo

of which interpolation property is limited to the bases of low P(x) = Z rp(2t — k). 2)
regularity [3], the proposed basis set yields a scheme of an

arbitrary order of regularity as well as saves the computationarl1 il ffici . i ; h
overhead of total filed reconstruction. The filter coefficients 2} in (2) are obtained from the

Daubechies filter of the compactly supported wavelgtqd8]
by

k=—o0

Il. FORMULATION

. . . . +oo

The Deslauriers—Dubuc interpolating functipof order2p— * _ Z

. . . . . hk = hrnhrn,—k- (3)
lis given by an autocorrelation function of the Daubechies com-

m=—0o<

Forp=2{h}|k=—3, =2, - -+, 3}={—0.0625, 0, 0.5625, 1.0,
0.5625,0, —0.0625} and forp = 4, {hf|k = —7,—6, ---, 7}
={-0.00244141, 0, 0.0239258, 0, —0.119 629, 0, 0.598145,
1.0,0.598145,0,—0.119 629, 0,0.0239258, 0, —0.002 44141},
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TABLE |
CONNECTION COEFFICIENTS FOR THENTERPOLATING BASIS OFp = 4

Jy+0Ey+6aEy:an_aHZ' ©)

! 044 Ogp Oys Oy ot Oz oz
3 ~0.0000018
'; 0.000010 g-gggggg; 0.0000108 For the Galerkin procedure of biorthogonal bases, the equation
5| -0.0008308 | 0.0030967 0.0008309 i; tested with the dug.l functions (5) and (6), gnd py using the
-4 | 0.0086543 | -0.0144141 | -0.0000017 g-ggggﬁs:g biorthogonality conditions (7) we obtain the final time-evolu-
-3 | -0.0419957 | 0.0394952 | 0.0044481 | 0. . . . - .
| 01560101 | -0.0637289 | 0.3839979 | -0.2003309 tion equations in the similar form as in the W-MRTD scheme
-1|-1.3110341 | 0.0533016 0.0 | -1.8610039 [1]
0| 1311030 0.0 | -0.3839979 | 1.8610039
1| -0.1560101 | -0.0533016 | -0.0044481 | 0.2903309 pus 99
21 0.0419957 | 0.0637289 | 0.0000017 | -0.0426846 i Ky nd1/2
3 | -0.0086543 | -0.0394952 0.0086543 _
4| 0.0008309 | 0.0144141 -0.0008308 - M Y, $P + 27At
5| 0.0000109 | -0.0030967 -0.0000109 Qe+ oAt BREnTL/2 T 90 4 oA
6 0.0004033 1
7 -0.0000397 xz, b z, i
8 0.0000018 ) { A_z [Z a¢¢(l)Hi, k+i+1/2,n + Z aw’qb(l)Hi, k4141, n]
{ {
: . . . 1 .
Although (4) is not a true wavelet since it has no vanishing mo- T Az [Z a¢¢(l)Hfjr‘ffl/27 kon
ments, it generates multiresolution analysis and plays the same !

role as other wavelets in the context of the Galerkin procedure. o y. b6
The dual functions can be chosen as the Dirac delta function + Z aW(l)Hi+l+1/2,k+1/2,n EARE (10)
and a linear combination of those as t

</3($) — §(x) ) The field components o can be obtained similarly. The sum-
2 mation with respect to the stenéiin (10) is taken according to
5 — k the number of the connection coefficiemis for &, ¢ = ¢, .
_ _1ykR—1p* o 3 3
) = Z (=17 A kd <aj 2) ' ©) The dual functions in the form of the Dirac impulses simplify

k=—2p+2 . . ..
the calculation of the connection coefficienig (1) as
Since the Dirac delta is not in the space of square integrable

functions, the resulting basis set is in nbAspace. Leff;(z) = toull) = dpit1/2 dis) = de(z) (11)
Ff(x/Ax) — ) for £ = ¢, v, $, and+) with Az being the PONEN A | dr |, i 1)
spatial discretization interval, then the set of the basis functions dpi1/2] -
satisfies the biorthogonal relations agy(l) = <T 1/)71—z>
(Bir d) =6ijr (Wi, P5) = iy ipz (1)t 1pr de(x)
~ 7 = — V1 ——
(i Z/)j> = (¥, ¢j> =0 () k=—2p+2 M da z=—I4+k/2—1/2

whereé is the Kronecker delta function. (12)

The electromagnetic field is then expanded in the scalinga’ (1) = dipit1/2 & i do(x) (13)
functions (1) and the wavelet functions (4) in space and in the “¥¢\"/ — dz =ty T
Haar scaling function&(t) [1] in time; for the case of two-di- dpiv1a| -
mensional (2-D) TE polarization ayy(l) = <T T/Jiz>
Ey(xv 2, t) 20 . % d(/) x
Foo =2 Y (=DM %
- Z {Eiﬁiﬂ/ﬁi(x)%(z) h=—2pt2 TE Ak
i, k, n=—00 (14)
Y, . Y, b .
+E; kf}/2,n+1/2¢’(x)¢’“(z) + B,k n1/2¥i(@)0(2) \yhich have been evaluated numerically and listed in Table | for
+ Efﬁ—qff?,kﬂ/z n+1/21/’71(37)1/’k(Z)}hn+1/2(t) (8) p=4asan example.

o Although the wavelet terms in (10) is valid only for a homo-
and similarly forH,, and H., whereh,(t) = h(t/At —n 4+  geneous medium, the scheme forinhomogeneous media is given
1/2) andAt being the time step. Note that, as in [1], expansiofs those in [1] with somewhat simpler representation. It can be
coefficients for the wavelet terms are defined on the Yee cell [18f,own thats,, anda,,,; of the present scheme are equivalent to
at nodes halfway between the regular nodes in the directionigjse of the Daubechies orthogonal wavelets. This fact implies
the corresponding wavelets. that the numerical dispersion of the scheme using the scaling

Th? field expansions (8) and thOS.EHfr and H. are then fynction is equivalent to that in [3], and that the present scheme
substituted into Maxwell’s curl equations yields an optimum algorithm with a minimum number of con-
OH, OE, OH. JE, nection coefficients to reproduce a particular order of polyno-

Hor T e THTar T oz mial.
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The dimensions are all normalized such that the speed of light
is unity. The perfect electric conductor (PEC) condition was im-
plemented using the mirror principle as in [1], imposing even
symmetry for the tangential electric field and odd symmetry for
the tangential magnetic field. The number of time steps were
2829 for cavity (a) and 5656 for cavities (b) and (c) to obtain
a convergent frequency spectrum. The dominant resonant fre-
guencies are listed in Table II.

It was found that, for cavity (a), DPand DD, gave about 1%
of error, and by using DR, the error decreased to about 0.2%
while only a few cells are involved. Note also that by adding
wavelets¢t) and+¢ in DDy, the error decreased to the same
level. For the case of inhomogeneous media b) and c), the nu-
merical errors are larger than the homogeneous case a); this is
due to the inaccurate representation of dielectric interface in this
scheme.

IV. CONCLUSION

The biorthogonal interpolating wavelets have been applied
to electromagnetic field analysis through the time-domain
wavelet-Galerkin scheme. The algorithm was verified by the
analysis of resonant cavities. The interpolation bases associated
with their duals of linear combination of Diracs yield schemes

Fig. 2. Resonant structures investigated: (a) an air-filled square resonator,&‘p)arbitrary orders of regularity while saving the numerical

partially dielectric filled cavity with one-dimensional material boundary, an

(c) partially dielectric filled cavity with 2-D material boundary. The dimensiorPVerhead of field reconstruction process. This is particularly

d = 0.5 /2 is a normalized value.

TABLE 1l
COMPUTED DOMINANT RESONANT FREQUENCY F',., AND CPU TIME (S) OF THE
RESONATORS THE REFERENCEVALUES OF THE DOMINANT RESONANT
FREQUENCIESARE (a): 1.0, (b): 0.540 009 ®&N\D (c): 0.592 4289

No. of Yee cells
Resonator and basis functions used DD, DD, DDy
s F 1.014994 | 1.012767 | 1.002264
“n error (%) +1.50 +1.27 | +0.226
¢ only CPU time (s) | 0.38 0.40 0.42
a - T, 0.001525 | 1.001045 | 1.002047
2x2 ervor (%) | -0.847 | +0.195 | +0.205
¢, ¢u and v¢ CPU time (s) | 0.50 0.59 0.65
T, 0546030 | 0546171 | 0.545502
b Ax8 error (%) 4128 | 4114 | +L07
@9 only CPU time (s) | 156 1.04 2.01
T, 0.602563 | 0.601690 | 0.601281
¢ ix8 error (%) | +L71 | +156 | +1.49
¢ only CPU time (s) | 154 1.91 2.06

I1l. V ERIFICATION OF THE METHOD

Resonator structures depicted in Fig. 2 were analyzed with(7]

the proposed method of = 2, 4, and 10 (denoted as DB,

DD, and DDy). Cavity (a) was filled with air and analyzed

with two schemes: 1) the scaling function ony(£)¢(~)] and
2) the scaling and the wavelet functior{)¢(2), ¢(x)(z),

¥(x)¢(2)]. Cavity (b) and (c) were inhomogeneous cases anélo]

analyzed with the scaling function only.

Square gridAl = Az =
The stability criterion is given in [11]; the stability facter=
coAt/Al for the present scheme was chosen tosbe 0.1.

Az was used in the analysis. [11]

effective for large scale problems with nonlinear media, which
will be the subject of further research.
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