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Application of Biorthogonal Interpolating Wavelets
to the Galerkin Scheme of Time Dependent

Maxwell’s Equations
Masafumi Fujii and Wolfgang J. R. Hoefer

Abstract—A family of biorthogonal interpolating wavelets
has been applied to time-domain electromagnetic field modeling
through the wavelet-Galerkin scheme. The scaling functions are
the Deslauriers–Dubuc interpolating functions and the wavelets
are the shifted and contracted version of the scaling functions.
This set of bases yields a simple algorithm for the solution of
Maxwell’s equations in time domain due to their interpolation
properties. The derivation of the algorithm is presented in this
paper, followed by a series of numerical verification on some
resonant structures.

Index Terms—Biorthogonal wavelets, Deslauriers–Dubuc inter-
polating functions, electromagnetic field analysis, time domain.

I. INTRODUCTION

WAVELETS have been applied to the solution of
Maxwell’s equations in time domain [1], [2] yielding a

scheme of highly linear numerical dispersion properties. The
authors have extended the shifted interpolation scheme of [2]
by using the scaling functions of higher regularity [3] and have
shown advantages of the scheme in analyzing electrically large
inhomogeneous structures [4].

This paper addresses an application of the interpolating
wavelets [5], [6] through the wavelet-Galerkin scheme of the
time dependent Maxwell’s equations. The scaling function
is the Deslauriers–Dubuc interpolating function [7], and the
wavelet is the shifted and contracted version of the scaling
function. These functions constitute non-biorthogonal bases
that are smooth, symmetric, compactly supported and exactly
interpolating. Unlike the Daubechies orthogonal wavelets [8],
of which interpolation property is limited to the bases of low
regularity [3], the proposed basis set yields a scheme of an
arbitrary order of regularity as well as saves the computational
overhead of total filed reconstruction.

II. FORMULATION

The Deslauriers–Dubuc interpolating functionof order
is given by an autocorrelation function of the Daubechies com-
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Fig. 1. Deslauriers–Dubuc interpolating function of order2p � 1 for p =

2; � � � ; 10. They have even symmetry with respect tox = 0. The numbers in
the legend denote the parameterp.

pactly supported orthogonal scaling functionsof vanishing
moments [9] as

(1)

which has even symmetry and minimum support of
to reproduce polynomials of order . Fig. 1

shows of .
We choose as a scaling function, which satisfies the

so-called dilation relation

(2)

The filter coefficients in (2) are obtained from the
Daubechies filter of the compactly supported wavelets[8]
by

(3)

For ,
and for

.
Then, the wavelet function which creates the “detail” space
can be chosen as

(4)
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TABLE I
CONNECTIONCOEFFICIENTS FOR THEINTERPOLATINGBASIS OFp = 4

Although (4) is not a true wavelet since it has no vanishing mo-
ments, it generates multiresolution analysis and plays the same
role as other wavelets in the context of the Galerkin procedure.

The dual functions can be chosen as the Dirac delta function
and a linear combination of those as

(5)

(6)

Since the Dirac delta is not in the space of square integrable
functions, the resulting basis set is in non-space. Let

for , , , and with being the
spatial discretization interval, then the set of the basis functions
satisfies the biorthogonal relations

(7)

where is the Kronecker delta function.
The electromagnetic field is then expanded in the scaling

functions (1) and the wavelet functions (4) in space and in the
Haar scaling functions [1] in time; for the case of two-di-
mensional (2-D) TE polarization

(8)

and similarly for and , where
and being the time step. Note that, as in [1], expansion

coefficients for the wavelet terms are defined on the Yee cell [10]
at nodes halfway between the regular nodes in the direction of
the corresponding wavelets.

The field expansions (8) and those of and are then
substituted into Maxwell’s curl equations

(9)

For the Galerkin procedure of biorthogonal bases, the equation
is tested with the dual functions (5) and (6), and by using the
biorthogonality conditions (7) we obtain the final time-evolu-
tion equations in the similar form as in the W-MRTD scheme
[1]

(10)

The field components of can be obtained similarly. The sum-
mation with respect to the stencilin (10) is taken according to
the number of the connection coefficients for .
The dual functions in the form of the Dirac impulses simplify
the calculation of the connection coefficients as

(11)

(12)

(13)

(14)

which have been evaluated numerically and listed in Table I for
as an example.

Although the wavelet terms in (10) is valid only for a homo-
geneous medium, the scheme for inhomogeneous media is given
as those in [1] with somewhat simpler representation. It can be
shown that and of the present scheme are equivalent to
those of the Daubechies orthogonal wavelets. This fact implies
that the numerical dispersion of the scheme using the scaling
function is equivalent to that in [3], and that the present scheme
yields an optimum algorithm with a minimum number of con-
nection coefficients to reproduce a particular order of polyno-
mial.
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(a)

(b)

(c)

Fig. 2. Resonant structures investigated: (a) an air-filled square resonator, (b)
partially dielectric filled cavity with one-dimensional material boundary, and
(c) partially dielectric filled cavity with 2-D material boundary. The dimension
d = 0:5

p
2 is a normalized value.

TABLE II
COMPUTEDDOMINANT RESONANTFREQUENCYF , AND CPU TIME (s) OF THE

RESONATORS. THE REFERENCEVALUES OF THEDOMINANT RESONANT

FREQUENCIESARE (a): 1.0, (b): 0.540 009 0,AND (c): 0.592 428 9

III. V ERIFICATION OF THEMETHOD

Resonator structures depicted in Fig. 2 were analyzed with
the proposed method of and (denoted as DD,
DD and DD ). Cavity (a) was filled with air and analyzed
with two schemes: 1) the scaling function only [ ] and
2) the scaling and the wavelet functions [ , ,

]. Cavity (b) and (c) were inhomogeneous cases and
analyzed with the scaling function only.

Square grid was used in the analysis.
The stability criterion is given in [11]; the stability factor

for the present scheme was chosen to be .

The dimensions are all normalized such that the speed of light
is unity. The perfect electric conductor (PEC) condition was im-
plemented using the mirror principle as in [1], imposing even
symmetry for the tangential electric field and odd symmetry for
the tangential magnetic field. The number of time steps were
2829 for cavity (a) and 5656 for cavities (b) and (c) to obtain
a convergent frequency spectrum. The dominant resonant fre-
quencies are listed in Table II.

It was found that, for cavity (a), DDand DD gave about 1%
of error, and by using DD , the error decreased to about 0.2%
while only a few cells are involved. Note also that by adding
wavelets and in DD , the error decreased to the same
level. For the case of inhomogeneous media b) and c), the nu-
merical errors are larger than the homogeneous case a); this is
due to the inaccurate representation of dielectric interface in this
scheme.

IV. CONCLUSION

The biorthogonal interpolating wavelets have been applied
to electromagnetic field analysis through the time-domain
wavelet-Galerkin scheme. The algorithm was verified by the
analysis of resonant cavities. The interpolation bases associated
with their duals of linear combination of Diracs yield schemes
of arbitrary orders of regularity while saving the numerical
overhead of field reconstruction process. This is particularly
effective for large scale problems with nonlinear media, which
will be the subject of further research.
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